Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunol ; 35(7): 339-348, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37083755

RESUMO

Natural killer (NK) cells play pivotal roles in innate immunity as well as in anti-tumor responses via natural killing, while their activity is tightly regulated by cell-surface inhibitory receptors. Immunoglobulin-like transcript 3/leukocyte immunoglobulin-like receptor B4 (ILT3/LILRB4, also known as gp49B in mice) is an inhibitory receptor expressed on activated NK cells as well as myeloid-lineage cells. The common physiologic ligand of human LILRB4 and gp49B was identified very recently as fibronectin, particularly the N-terminal 30 kDa domain (FN30). We hypothesized that LILRB4 could bind fibronectin on target cells in trans together with integrins, classical fibronectin receptors, in cis and deliver an inhibitory signal in NK cells, leading to attenuated natural killing. Flow cytometric and confocal microscopic analyses of NK cell-surface gp49B and integrins suggested that these novel and classical fibronectin receptors, respectively, co-engage fibronectin immobilized on a culture plate. Biochemical analyses indicated that tyrosine phosphorylation of spleen tyrosine kinase was augmented in gp49B-deficient NK cells upon binding to the immobilized fibronectin. While surface fibronectin-poor YAC-1 cells were evenly sensitive as to natural killing of both gp49B-positive and -negative NK cells, the killing of fibronectin-rich Lewis lung carcinoma cells, but not the FN30-knockout cells, was augmented among gp49B-deficient NK cells. These results suggest that the natural cytotoxicity of NK cells is negatively regulated through LILRB4/gp49B sensing fibronectin on target cells, which sheds light on the unexpected role of LILRB4 and fibronectin as a potential attenuator of NK cell cytotoxicity in the tumor microenvironment.


Assuntos
Fibronectinas , Células Matadoras Naturais , Camundongos , Animais , Humanos , Fibronectinas/metabolismo , Integrinas/metabolismo , Receptores de Fibronectina/metabolismo , Imunoglobulinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo
2.
Int Immunol ; 34(8): 435-444, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35689642

RESUMO

LILRB4 (B4, also known as ILT3/CD85k) is an immune checkpoint of myeloid lineage cells, albeit its mode of function remains obscure. Our recent identification of a common ligand for both human B4 and its murine ortholog gp49B as the fibronectin (FN) N-terminal 30 kDa domain poses the question of how B4/gp49B regulate cellular activity upon recognition of FN in the plasma and/or the extracellular matrix. Since FN in the extracellular matrix is tethered by FN-binding integrins, we hypothesized that B4/gp49B would tether FN in cooperation with integrins on the cell surface, thus they should be in close vicinity to integrins spatially. This scenario suggests a mode of function of B4/gp49B by which the FN-induced signal is regulated. The FN pull-down complex was found to contain gp49B and integrin ß 1 in bone marrow-derived macrophages. The confocal fluorescent signals of the three molecules on the intrinsically FN-tethering macrophages were correlated to each other. When FN-poor macrophages adhered to culture plates, the gp49-integrin ß 1 signal correlation increased at the focal adhesion, supporting the notion that gp49B and integrin ß 1 become spatially closer to each other there. Adherence of RAW264.7 and THP-1 cells to immobilized FN induced phosphorylation of spleen tyrosine kinase, whose level was augmented under B4/gp49B deficiency. Thus, we concluded that B4/gp49B can co-tether FN in cooperation with integrin in the cis configuration on the same cell, forming a B4/gp49B-FN-integrin triplet as a regulatory unit of a focal adhesion-dependent pro-inflammatory signal in macrophages.


Assuntos
Fibronectinas , Integrinas , Animais , Adesão Celular , Fibronectinas/química , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Humanos , Integrinas/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Fosforilação , Receptores Imunológicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...